A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae
نویسندگان
چکیده
Volatile organic compounds (VOCs) emitted by plants are secondary metabolites that mediate the plant interaction with pathogens and herbivores. These compounds may perform direct defensive functions, i.e., acting as antioxidant, antibacterial, or antifungal agents, or indirectly by signaling the activation of the plant's defensive responses. Using a non-targeted GC-MS metabolomics approach, we identified the profile of the VOCs associated with the differential immune response of the Rio Grande tomato leaves infected with either virulent or avirulent strains of Pseudomonas syringae DC3000 pv. tomato. The VOC profile of the tomato leaves infected with avirulent bacteria is characterized by esters of (Z)-3-hexenol with acetic, propionic, isobutyric or butyric acids, and several hydroxylated monoterpenes, e.g., linalool, α-terpineol, and 4-terpineol, which defines the profile of an immunized plant response. In contrast, the same tomato cultivar infected with the virulent bacteria strain produced a VOC profile characterized by monoterpenes and SA derivatives. Interestingly, the differential VOCs emission correlated statistically with the induction of the genes involved in their biosynthetic pathway. Our results extend plant defense system knowledge and suggest the possibility for generating plants engineered to over-produce these VOCs as a complementary strategy for resistance.
منابع مشابه
بررسی اثر چند ژن بیماری زا در زندگی اپیفیتی (Pseudomonas syringae)
Pseudomonas syringae is a phytopathogenic bacterium with a wide host range. The biology of this bacterium consists of two phases. The first phase is the indication of disease on the host plant which generally appears in the form of necrosis on the aerial parts of plant (pathogenicity phase). The second phase is a rapid multiplication of bacteria on the aerial surface of the plant without inflic...
متن کاملبررسی اثر چند ژن بیماری زا در زندگی اپیفیتی (Pseudomonas syringae)
Pseudomonas syringae is a phytopathogenic bacterium with a wide host range. The biology of this bacterium consists of two phases. The first phase is the indication of disease on the host plant which generally appears in the form of necrosis on the aerial parts of plant (pathogenicity phase). The second phase is a rapid multiplication of bacteria on the aerial surface of the plant without inflic...
متن کاملScreen of Non-annotated Small Secreted Proteins of Pseudomonas syringae Reveals a Virulence Factor That Inhibits Tomato Immune Proteases
Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) is an extracellular model plant pathogen, yet its potential to produce secreted effectors that manipulate the apoplast has been under investigated. Here we identified 131 candidate small, secreted, non-annotated proteins from the PtoDC3000 genome, most of which are common to Pseudomonas species and potentially expressed during apoplastic coloni...
متن کاملAlgU Controls Expression of Virulence Genes in Pseudomonas syringae pv. tomato DC3000.
UNLABELLED Plant-pathogenic bacteria are able to integrate information about their environment and adjust gene expression to provide adaptive functions. AlgU, an extracytoplasmic function (ECF) sigma factor encoded by Pseudomonas syringae, controls expression of genes for alginate biosynthesis and genes involved with resisting osmotic and oxidative stress. AlgU is active while these bacteria ar...
متن کاملArabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea
Upon pathogen infection, activation of immune response requires effective transcriptional reprogramming that regulates inducible expression of a large set of defense genes. A number of ethylene-responsive factor transcription factors have been shown to play critical roles in regulating immune responses in plants. In the present study, we explored the functions of Arabidopsis AtERF15 in immune r...
متن کامل